CodeLAB
на главную карта сайта обратная связь

Популярные задачи:

#Сортировка выбором, общий подход. (70026 hits)
#Сортировка вставкой. (108803 hits)
#Обработка шаблонных писем. (40287 hits)
#Переключатель в кириллицу. (30971 hits)
#Арктангенс. (43674 hits)
#Замена символа строки. (440162 hits)
#Простая геометрическая и текстовая анимация. (399067 hits)
#Создание нестандартного (custom-ного) окна браузера. (34153 hits)
#Вычисление медианы заданной выборки. (47480 hits)
#Случайный выбор нескольких несовпадающих значений из множества. (56119 hits)
#Доступ ко всем полям и методам. (55939 hits)
#Преобразование RGB в HEX и обратно HEX в RGB. (54606 hits)
#Таймер. (38823 hits)
#Наибольший общий делитель. (188060 hits)
#Сохранение данных формы после перезагрузки через куки. (197663 hits)
#Вращение 3D объекта. (34002 hits)
#Рисование множества Мандельброта. (42017 hits)
#Счетчик времени с точностью до микросекунд. (123739 hits)
#Отслеживание изменений файла. (35839 hits)
#Вращение фигуры в плоскости. (37757 hits)


Главная >> Каталог задач >> Поиск >> Последовательный >>

Последовательный поиск и его оптимизации

Aвтор:
Дата:
Просмотров: 43434
реализации(java: 1шт...) +добавить

Последовательный (или линейный) поиск - наверное одна из самых простых и наиболее использумых программистких задач, выполняющая повсеместно почти что в любой программе. Казалось бы - что вообще можно оптимизировать в таком элементарном алгоритме?
Оказывается и здесь есть достаточное поле для улучшения производительности...

По книге Джона Бентли:
"Жемчужины программирования"

"...Обратимся к последовательному поиску в таблице, которая может быть неотсортированной:

 псевдокод: Последовательный поиск в массиве, исходная версия  ссылка
  1. int ssearch1(t)
  2. for i = 0 to n
  3. if x[i] == t
  4. return i
  5. return -1;


Эта короткая программа находит элемент в массиве х за 4,06n нc в среднем (прим. редактора: при быстроте компьютеров по тем временам конечно). Поскольку в среднем приходится просматривать примерно половину элементов, на каждый из них приходится около 8,1 нc.

Цикл выглядит достаточно стройным, но жирок с него все-таки срезать можно. Во внутреннем цикле выполняется две проверки. Сначала проверяется, достиг ли индекс i конца массива, а затем выясняется, не равен ли элемент x[i] искомому. Первую проверку можно исключить, добавив элемент-метку в конце массива:

 псевдокод: Линейный поиск, оптимизированная версия, убрана 1 проверка  ссылка
  1. int ssearch2(t)
  2. hold = x[n]
  3. x[n] = t
  4. for (i = 0; ;i++)
  5. if x[i] == t
  6. break
  7.  
  8. x[n] = hold
  9. if i == n
  10. return -1
  11. else
  12. return i;


Время работы уменьшилось до 3,87n нc, то есть быстродействие возросло на 5%. Мы предполагаем, что массив уже выделен, поэтому имеется возможность временно затереть значение х[n]. Нужно быть аккуратным при сохранении значения х[n] и его восстановлении. В большинстве приложений этого не требуется, так что мы исключим эту операцию из следующей версии программы.

Теперь внутренний цикл содержит только операцию увеличения индекса, обращение к элементу массива и проверку. Можно ли еще что-нибудь урезать? В последней версии нашей программы количество повторов цикла сокращается в 8 раз. Дальнейшее сокращение не ускорило работу программы.

В итоге получаем такой последовательный поиск в массиве, оптимизированный практически до предела:

 псевдокод: Алгоритм последовательного поиска ускоренный примерно в 8 раз  ссылка
  1. int ssearch3(t)
  2. x[n] = t
  3. for (i = 0; ;i += 8)
  4. if x[i] == t
  5. break
  6. if x[i+1] == t
  7. i += 1
  8. break
  9. if x[i+2] == t
  10. i += 2
  11. break
  12. if x[i+3] == t
  13. i += 3
  14. break
  15. if x[i+4] == t
  16. i += 4
  17. break
  18. if x[i+5] == t
  19. i += 5
  20. break
  21. if x[i+6] == t
  22. i += 6
  23. break
  24. if x[i+7] == t
  25. i += 7
  26. break
  27.  
  28. if i == n
  29. return -1
  30. else
  31. return i;


При этом время поиска сокращается до 1,07n нc, то есть наблюдается 56% ускорение. На старых компьютерах уменьшение дополнительных затрат может дать ускорение работы на 10 или 20%. На современных машинах раскрытие цикла позволяет избежать остановки конвейера, уменьшить количество ветвей и увеличить параллелизм на уровне инструкций.... "

 

При этом согласно проведенным примерным тестам производительности - оптимизация #1 быстрее базовой на процентов 10%, оптимизация #2 - процентов на 20%.

 

 

Реализации:

java(1), C#(4)   +добавить

1) Последовательный поиск, начальная версия на java, code #796[автор:this]