Сортировка Шелла это, по-сути, модификация схем сортировки других алгоритмов. Фактически для сортировки элементов используются другие алгоритмы, такие как: пузырьком, вставками, выбором и т.д. Но только эти алгоритмы применяются не ко всей исходной последовательности, а к ее частям.
Сначала в исходной последовательности сортируются между собой элементы, отстоящие друг от друга на расстоянии n/2 элементов, затем на расстоянии n/4 и т.д. до тех пор пока не получим 2 последовательности, элементы которых отстоят друг от друга на расстоянии 1-го элемента. После этого делаем сортировку этой полученной последовательсти выбранным методом и на выходе имеем уже полностью отсортированную последовательность.
Возникает вопрос: зачем же были предыдущие сортировки? Для того, чтобы расположить сортируемые элементы наиболее близко к своим положенным позициям. А в этом случае в последней сортировке по всей последовательности значительно сокращается количество перестановок.
Пример. Имеется последовательность [2, 3, 9, 2, 8, 4, 6, 8, 11, 12, 4, 6], n=12. Символом d - будем обозначать расстояние между сортируемыми элементами на каждом шаге (на первом шаге d = n/2, на втором d = d/2 и т.д.)
1 шаг. d = n/2 = 6. => Получаем 6 сортируемых групп(имеют одинаковый цвет):
[2, 3, 9, 2, 8, 4, 6, 8, 11, 12, 4, 6]
После сортировки в пределах каждой группы, имеем:
[2, 3, 9, 2, 4, 4, 6, 8, 11, 12, 8, 6]
2 шаг. d = d/2 = 3. => Получаем 2 сортируемых группы(имеют одинаковый цвет):
[2, 3, 9, 2, 4, 4, 6, 8, 11, 12, 8, 6]
После сортировки в пределах каждой группы, имеем:
[2, 3, 4, 2, 4, 6, 6, 8, 9, 12, 8, 11]
3 шаг. d = d/2 = 1(целочисленное деление) => заключительный шаг. Сортируем всю последовательность:
[2, 3, 4, 2, 4, 6, 6, 8, 9, 12, 8, 11] в итоге получим:
[2, 2, 3, 4, 4, 6, 6, 8, 8, 9, 11, 12]
В качестве самой сортировки элементов в группе можно использують различные алгоритмы простой сортировки: вставками, выбором, пузырьком и проч. Но, если подумать, самым оптимальным вариантом в данном случае - будет прогонка только лишь 1-ой итерации пузырькового метода. Т.к. в первых 2-х случаях нужно будет расходовать память на формирование дополнительной последовательности элементов группы, чтобы передавать ее на вход сортировки вставкой или выбором, ну или формирование последовательности индексов этих элементов... хотя можно будет также продумать вариант передачи всей исходной последовательности и в дополнительных параметрах указывать смещение первого нужного элемента и шаг прохода по этим элементам с целью, чтобы пройти элементы именно нужной нам группы(в этом случае не надо будет формировать дополнительные последовательности элементов в группах, но придется модифицировать базовые алгоритмы упомянутых сортировок).
При использовании же пузырького подхода мы в самом алгоритме сортировки Шелла проходимся по каждому элементу каждой группы и меняем его местами со следующим(из его же группы конечно) если он его больше(в случае сортировки по возрастанию конечно). В результате, мы к элементам каждой группы применим как-бы 1 проход пузырьковой сортировки. Остальные проходы - делать не нужно: это будет делаться на каждой следующей итерации основного нашего алгоритма шелла, поскольку шаг d разбиения на группы уменьшается. НО! На заключительной сортировке всей последовательности метод пузырьком должен отработать полностью. Либо же следует вызвать сортировку вставками, либо выбором.
Соответственно, получим:
d = n while d > 1 d = d / 2 /* целочисленное */ i = 0 /* делаем 1 "пузырьковый" проход для элементов каждой группы */ while (j = i + d) < n if x[i] > x[j] /* x[i] и x[j] меняем местами */ swap(i, j) i++ BubbleSort() /* либо InsertSort(), либо SelectSort() */
При этом производительность алгоритма пропорциональна ~ O(n2), но количество перестановок по-сравнению с простыми методами вставкой, выбором или пузырьком - заметно сокращается. Дополнительная память - не используется(не считая счетчиков циклов и проч.).
Величина шага d - называется приращением и является важной характеристикой алгоритма Шелла. И выбор динамики уменьшения этой величины очень существенно сказывается на производительности алгоритма в целом, позволяя достигать пропорций от ~ O(n7/6) в лучшем случае до ~ O(n4/3) в худшем, о чем рассказывает следующая задача сортировка Шелла, оптимальный выбор приращений.